Inventory number | IRN | Number of state registration | ||
---|---|---|---|---|
0323РК01711 | AP19579370-KC-23 | 0123РК00142 | ||
Document type | Terms of distribution | Availability of implementation | ||
Краткие сведения | Gratis | Number of implementation: 0 Not implemented |
||
Publications | ||||
Native publications: 0 | ||||
International publications: 0 | Publications Web of science: 0 | Publications Scopus: 0 | ||
Patents | Amount of funding | Code of the program | ||
0 | 22831455.3 | AP19579370 | ||
Name of work | ||||
Разработка автономного мобильного робота и системы распознавания объектов для патрулирования местности на основе алгоритмов машинного обучения | ||||
Type of work | Source of funding | Report authors | ||
Applied | Бурибаев Жолдас Алладинович | |||
0
0
0
0
|
||||
Customer | МНВО РК | |||
Information on the executing organization | ||||
Short name of the ministry (establishment) | Нет | |||
Full name of the service recipient | ||||
Товарищество с ограниченной ответственностью "DigitAlem" | ||||
Abbreviated name of the service recipient | ТОО "DigitAlem" | |||
Abstract | ||||
В данном проекте объектом исследования является разработка автономного мобильного робота, предназначенного для выполнения патрулирования открытых и закрытых пространств с использованием модифицированной генетическим алгоритмом нейронной сети для распознавания различных объектов. Основным аспектом является исследование его механической конструкции, электронных компонентов, программного обеспечения и общей функциональности. Также, разработка и оптимизация генетического алгоритма для настройки параметров нейронной сети. Это включает в себя исследование методов кроссовера, мутации, и других операторов. Бұл жобада зерттеу нысаны әртүрлі объектілерді тану үшін генетикалық алгоритммен өзгертілген нейрондық желіні пайдалана отырып, ашық және жабық кеңістіктерді патрульдеу үшін арналған автономды мобильді роботты жасау болып табылады. Негізгі аспект - оның механикалық дизайнын, электрондық компоненттерін, бағдарламалық жасақтамасын және жалпы функционалдығын зерттеу. Сондай-ақ, нейрондық желінің параметрлерін реттеудің генетикалық алгоритмін жасау және оңтайландыру. Бұған кроссовер, мутация және басқа операторларды зерттеу кіреді. Основной целью данного проекта является исследование и создание алгоритма на основе эвристического алгоритма поиска параметров оптимального решения в блоках сверточной нейронной сети для повышения точности и производительности распознавания. Еще одной целью является создание автономного мобильного робота способного передвигаться как в городской местности на открытых площадках и зеленых зонах, так и внутри автомобильной парковки с помощью алгоритмов одновременного картографирования и локализации. Разработка автономного мобильного робота предназначено для выполнения патрулирования открытых и закрытых пространств, применяя модифицированную генетическим алгоритмом нейронную сеть для распознавания различных объектов. Бұл жобаның негізгі мақсаты танудың дәлдігі мен өнімділігін арттыру үшін конволюциялық нейрондық желінің блоктарында оңтайлы шешімнің параметрлерін іздеудің эвристикалық алгоритмі негізінде алгоритмді зерттеу және құру болып табылады. Тағы бір мақсат – бір мезгілде картаға түсіру мен локализация алгоритмдерін қолдана отырып, қалалық жерлерде де ашық аумақтарда және жасыл аймақтарда, сондай-ақ автотұрақ ішінде қозғала алатын автономды мобильді робот жасау. Автономды мобильді роботты әзірлеу әртүрлі нысандарды тану үшін генетикалық алгоритммен өзгертілген нейрондық желіні пайдалана отырып, ашық және жабық кеңістіктерді патрульдеу үшін арналған. Для данного проекта методами исследования являются область вычислительной техники, машинное обучение, компьютерное зрение, робототехника и распознавание образов. Методы исследования рассматривают необходимость анализ существующих аналогов исследования оптимизации нейронных сетей с помощью генетических алгоритмов. Бұл жоба үшін зерттеу әдістері информатика, машиналық оқыту, компьютерлік көру, робототехника және үлгіні тану болып табылады. Зерттеу әдістері генетикалық алгоритмдерді пайдалана отырып, нейрондық желілерді оңтайландыруды зерттеудің бар аналогтарын талдау қажеттілігін қарастырады. Научной новизной служит тот факт, что в этом исследовании будет применятся генетический алгоритм для оптимизации сверточной нейронной сети. В данный момент очень много систем, которые используют компьютерное зрение. Существуют достаточное количество архитектур нейронных сетей, которые вполне хорошо справляются с поставленными задачами. Однако, большинство таких систем статичны или имеют очень хорошие условия для распознавания, таких как: освещение, ограниченное пространство, мало шума и.т.д. Также немаловажно отметить тот факт, что для обработки больших данных требуется большие вычислительные ресурсы. Что касается системы распознавания для роботов, то в этом случае есть большая вероятность трудности распознавания. В блоках архитектуры нейронных сетей есть несколько параметров, значения которых можно подобрать применения генетический алгоритм. Благодаря имитаций эволюционного процесса можно улучшить точность распознавания и сэкономить вычислительный ресурс. Для этого создана функция приспособленности для решения данной задачи. Таким образом, планируется реализация генетического алгоритма с помощью эволюционного моделирования, где будем популяцию устремлять в область с минимумом функций и выберем индивидуум с максимальной приспособленностью. После получения хороших результатов, предполагается применение предложенного метода оптимизации для внутренних блоков уже существующих архитектур таких как: YOLO и Mask R-CNN. Ғылыми жаңалық - бұл зерттеу конволюционды нейрондық желіні оңтайландыру үшін генетикалық алгоритмді қолданады. Қазіргі уақытта компьютерлік көруді пайдаланатын көптеген жүйелер бар. Берілген тапсырмаларды өте жақсы орындайтын нейрондық желі архитектураларының жеткілікті саны бар. Дегенмен, бұл жүйелердің көпшілігі статикалық немесе тану үшін өте жақсы жағдайларға ие, мысалы, жарықтандыру, шектеулі кеңістік, аз шу және т.б. Үлкен деректерді өңдеу үлкен есептеу ресурстарын қажет ететінін атап өту маңызды. Роботтарды тану жүйесіне келетін болсақ, бұл жағдайда тану қиындықтарының жоғары ықтималдығы бар. Нейрондық желі архитектурасының блоктарында бірнеше параметрлер бар, олардың мәндерін генетикалық алгоритм арқылы таңдауға болады. Эволюциялық процесті имитациялау арқылы тану дәлдігін жақсартуға және есептеу ресурстарын үнемдеуге болады. Осы мақсатта бұл мәселені шешу үшін фитнес функциясы жасалды. Осылайша, эволюциялық модельдеуді пайдалана отырып, генетикалық алгоритмді енгізу жоспарлануда, онда біз популяцияны ең аз функциялары бар аймаққа бағыттаймыз және максималды жарамды жеке тұлғаны таңдаймыз. Жақсы нәтижелерге қол жеткізгеннен кейін YOLO және Mask R-CNN сияқты қолданыстағы архитектуралардың ішкі блоктары үшін ұсынылған оңтайландыру әдісін қолдану жоспарлануда. Предлагаемый автономный мобильный робот будет иметь отличную от аналогов конструкцию и структуру, а также модифицированный искусственный интеллект. В Казахстане стоимость робота и разработка его программной составляющей будет дешевле. Ұсынылып отырған автономды мобильді роботтың аналогтарынан өзгеше дизайны мен құрылымы, сондай-ақ модификацияланған жасанды интеллект болады. Қазақстанда роботтың құны және оның бағдарламалық құрамдас бөлігін әзірлеу арзанырақ болады. Степень внедрения отсутствует Орындалу деңгейі жоқ Научный эффект заключается в разработке системы автономной навигации и построения карты и маршрута, а также в разработке и применении модифицированных с помощью генетического алгоритма нейронных сетей улучшающих точность распознавания объектов и производительность. Социально-экономический эффект состоит в уменьшении вероятности преступлений, увеличения доверия к роботизированным средствам Ғылыми нәтиже автономды навигация жүйесін әзірлеуде және карта мен маршрутты құруда, сондай-ақ объектіні тану мен өнімділіктің дәлдігін жақсартатын генетикалық алгоритмді қолдану арқылы модификацияланған нейрондық желілерді әзірлеу мен қолдануда жатыр. Әлеуметтік-экономикалық нәтиже қылмыстардың ықтималдығын төмендету және роботтық құралдарға деген сенімді арттыру болып табылады С помощью применения генетического алгоритма будет создан собственный алгоритм, который в последующем будет применяться в компьютерном зрении системы робота. Таким образом, область исследований и разработок совмещает элементы робототехники, искусственного интеллекта и компьютерного зрения для создания эффективных и автономных роботов, способных выполнять задачи патрулирования. Генетикалық алгоритмді қолдана отырып, пайдаланушы алгоритмі жасалады, ол кейіннен робот жүйесін компьютерлік көруде қолданылады. Осылайша, ғылыми-зерттеу және әзірлеу саласы патрульдік тапсырмаларды орындауға қабілетті тиімді және автономды роботтарды жасау үшін робототехника, жасанды интеллект және компьютерлік көру элементтерін біріктіреді. |
||||
UDC indices | ||||
004.89 | ||||
International classifier codes | ||||
28.00.00; | ||||
Key words in Russian | ||||
Кибернетика; Нейронная сеть; Робот; компьютерное зрение; машинное обучение; | ||||
Key words in Kazakh | ||||
Кибернетика; нейрондық желі; Робот; компьютерлік көру; машиналық оқыту; | ||||
Head of the organization | Иманкулов Тимур Сакенович | PhD / Нет | ||
Head of work | Бурибаев Жолдас Алладинович | Phd / и.о. доцента |