Inventory number | IRN | Number of state registration | ||
---|---|---|---|---|
0323РК00257 | AP13067894-KC-23 | 0122РК00026 | ||
Document type | Terms of distribution | Availability of implementation | ||
Краткие сведения | Gratis | Number of implementation: 0 Not implemented |
||
Publications | ||||
Native publications: 0 | ||||
International publications: 1 | Publications Web of science: 1 | Publications Scopus: 0 | ||
Patents | Amount of funding | Code of the program | ||
0 | 24110982 | AP13067894 | ||
Name of work | ||||
О неравенстве типа Ляпунова | ||||
Type of work | Source of funding | Report authors | ||
Fundamental | Касымов Айдын Адилович | |||
0
0
1
0
|
||||
Customer | МНВО РК | |||
Information on the executing organization | ||||
Short name of the ministry (establishment) | МНВО РК | |||
Full name of the service recipient | ||||
"Институт математики и математического моделирования" | ||||
Abbreviated name of the service recipient | ИМММ | |||
Abstract | ||||
Проект направлен на изучение неравенств типа Ляпунова для дробно-эллиптических краевых задач на евклидовых пространствах, а также для субэллиптических краевых задач на группе Гейзенберга. Одной из ключевых ролей в изучении неравенств типа Ляпунова является приложение к спектральной теории. Таким образом, основные идеи этого проекта основаны на спектральной теории и некоммутативном анализе. В рамках данного исследования это позволяет изучать новые классы задач, а также обобщать ранее известные результаты на некоммутативную постановку, то есть на группы Гейзенберга. Жоба Евклид кеңістіктеріндегі бөлшек-эллиптикалық шекаралық есептер үшін, сондай-ақ Гейзенберг тобындағы субеллиптикалық шекаралық есептер үшін Ляпунов типіндегі теңсіздіктерді зерттеуге бағытталған. Ляпунов типіндегі теңсіздіктерді зерттеудегі негізгі рөлдердің бірі-спектрлік теорияға қосымша. Осылайша, осы жобаның негізгі идеялары спектрлік теория мен коммутативті емес талдауға негізделген. Осы зерттеу аясында бұл тапсырмалардың жаңа класстарын зерттеуге, сондай-ақ бұрын белгілі нәтижелерді коммутативті емес қойылымға, яғни Гейзенберг топтарына жалпылауға мүмкіндік береді. Этот проект направлен на изучение неравенства типа Ляпунова для дробных краевых задач, а также на изучение неравенства типа Ляпунова для субэллиптических уравнений с условием Дирихле на группах Гейзенберга. Мы применим полученные неравенства типа Ляпунова в спектральной теории. Бұл жоба бөлшек шекаралық есептер үшін Ляпунов типіндегі теңсіздікті зерттеуге, сондай-ақ Гейзенберг топтарындағы Дирихле шарты бар субеллиптикалық теңдеулер үшін Ляпунов типіндегі теңсіздікті зерттеуге бағытталған. Біз алынған Ляпунов типті теңсіздіктерді спектрлік теорияда қолданамыз. Для исследования этого проекта будут применены методы функционального неравенства, дробного исчисления, теории групп, некоммутативного анализа, спектральной теории и теории спектральной геометрии. Для изучения первой части проекта будут использоваться дробное исчисление и функциональный анализ. Для изучения второй части проекта будут применены дробное исчисление, спектральная теория и теория спектральной геометрии. Для изучения третьей части проекта будут применены функциональное неравенство, теория групп, некоммутативный анализ и спектральная теория. Бұл жобаны зерттеу үшін функционалдық теңсіздік әдістері, бөлшек есептеу, топ теориясы, коммутативті емес талдау, спектрлік теория және спектрлік геометрия теориясы қолданылады. Жобаның бірінші бөлігін зерттеу үшін бөлшек есептеу және функционалдық талдау қолданылады. Жобаның екінші бөлімін зерттеу үшін бөлшек есептеу, спектрлік теория және спектрлік геометрия теориясы қолданылады. Жобаның үшінші бөлігін зерттеу үшін функционалдық теңсіздік, топтық теория, коммутативті емес талдау және спектрлік теория қолданылады. Мы привели неравенство типа Ляпунова для дробной эллиптической краевой задачи. Мы доказали неравенство Рэлея-Фабера-Крана. Кроме того, мы комбинировали применение неравенства типа Ляпунова с неравенством спектральной геометрии. Біз бөлшекті эллиптикалық шекаралық есебі үшін Ляпунов теңсіздігін алдық. Біз Рэлей-Фабер-Кран теңсіздігін дәлелдедік. Сонымен қатар, біз Ляпунов типті теңсіздікті спектрлік геометриялық теңсіздікпен қолдануды біріктірдік. Проект является фундаментальным Бұл жоба-іргелі болып есептеледі Результаты данного проекта применяются в спектральной теории дифференциальных операторов, некоммутативный анализ и дробное исчисление. Бұл жобаның нәтижелері дифференциалдық операциялардың спектрлік теориясында, коммутативті емес талдау және бөлшек есептеуде қолданылады. Данный проект является фундаментальным и эффективность будет в спектральной теории дифференциальных операторов, некоммутативный анализ и дробное исчисление. Бұл жоба іргелі болып табылады және дифференциалдық операторлардың спектрлік теориясында, коммутативті емес талдауда және бөлшек есептеуде тиімді болады. Областями применения каждого из ожидаемых результатов будут спектральная теория, некоммутативный анализ и дробное исчисление, целевыми потребителями будут научные сообщества по всему миру. Күтілетін нәтижелердің әрқайсысының қолдану өрістері спектрлік теория, коммутативті емес талдау және бөлшек есептеу болады, ал мақсатты пайдаланушылар бүкіл әлемдегі ғылыми қауымдастықтар болады. |
||||
UDC indices | ||||
517.23, 512.816.1 | ||||
International classifier codes | ||||
27.29.19; 27.31.44; | ||||
Key words in Russian | ||||
Группа Гейзенберга; Субэллиптический оператор; гипоэллиптический оператор; Неравенство Ляпунова; Неравенство Рэлея-Фабера-Крана; Дробное исчисление; | ||||
Key words in Kazakh | ||||
Гейзенберг Тобы; Субэллиптикалық оператор; гипоэллиптикалық оператор; Ляпунов теңсіздігі; Рэлея-Фабера-Кран теңсіздігі; бөлшекті талдау; | ||||
Head of the organization | Садыбеков Махмуд Абдысаметович | д.ф.-м.н. / профессор | ||
Head of work | Касымов Айдын Адилович | Доктор PhD / Ассоциированный профессор по Математике |